51 research outputs found

    Towards human-level performance on automatic pose estimation of infant spontaneous movements

    Full text link
    Assessment of spontaneous movements can predict the long-term developmental disorders in high-risk infants. In order to develop algorithms for automated prediction of later disorders, highly precise localization of segments and joints by infant pose estimation is required. Four types of convolutional neural networks were trained and evaluated on a novel infant pose dataset, covering the large variation in 1 424 videos from a clinical international community. The localization performance of the networks was evaluated as the deviation between the estimated keypoint positions and human expert annotations. The computational efficiency was also assessed to determine the feasibility of the neural networks in clinical practice. The best performing neural network had a similar localization error to the inter-rater spread of human expert annotations, while still operating efficiently. Overall, the results of our study show that pose estimation of infant spontaneous movements has a great potential to support research initiatives on early detection of developmental disorders in children with perinatal brain injuries by quantifying infant movements from video recordings with human-level performance.Comment: Published in Computerized Medical Imaging and Graphics (CMIG

    Physical Activity Classification for Elderly People in Free-Living Conditions

    Get PDF
    Physical activity is strongly linked with mental and physical health in the elderly population and accurate monitoring of activities of daily living (ADLs) can help improve quality of life and well-being. This study presents and validates an inertial sensors-based physical activity classification system developed with older adults as the target population. The dataset was collected in free-living conditions without placing constraints on the way and order of performing ADLs. Four sensor locations (chest, lower back, wrist, and thigh) were explored to obtain the optimal number and combination of sensors by finding the best tradeoff between the system's performance and wearability. Several feature selection techniques were implemented on the feature set obtained from acceleration and angular velocity signals to classify four major ADLs (sitting, standing, walking, and lying). A support vector machine was used for the classification of the ADLs. The findings show the potential of different solutions (single sensor or multisensor) to correctly classify the ADLs of older people in free-living conditions. Considering a minimal set-up of a single sensor, the sensor worn at the L5 achieved the best performance. A two-sensor solution (L5 + thigh) achieved a better performance with respect to a single-sensor solution. By contrast, considering more than two sensors did not provide further improvements. Finally, we evaluated the computational cost of different solutions and it was shown that a feature selection step can reduce the computational cost of the system and increase the system performance in most cases. This can be helpful for real-time applications.<br/

    Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study

    Get PDF
    The popularity of using wearable inertial sensors for physical activity classification has dramatically increased in the last decade due to their versatility, low form factor, and low power requirements. Consequently, various systems have been developed to automatically classify daily life activities. However, the scope and implementation of such systems is limited to laboratory-based investigations. Furthermore, these systems are not directly comparable, due to the large diversity in their design (e.g., number of sensors, placement of sensors, data collection environments, data processing techniques, features set, classifiers, cross-validation methods). Hence, the aim of this study is to propose a fair and unbiased benchmark for the field-based validation of three existing systems, highlighting the gap between laboratory and real-life conditions. For this purpose, three representative state-of-the-art systems are chosen and implemented to classify the physical activities of twenty older subjects (76.4 \ub1 5.6 years). The performance in classifying four basic activities of daily life (sitting, standing, walking, and lying) is analyzed in controlled and free living conditions. To observe the performance of laboratory-based systems in field-based conditions, we trained the activity classification systems using data recorded in a laboratory environment and tested them in real-life conditions in the field. The findings show that the performance of all systems trained with data in the laboratory setting highly deteriorates when tested in real-life conditions, thus highlighting the need to train and test the classification systems in the real-life setting. Moreover, we tested the sensitivity of chosen systems to window size (from 1 s to 10 s) suggesting that overall accuracy decreases with increasing window size. Finally, to evaluate the impact of the number of sensors on the performance, chosen systems are modified considering only the sensing unit worn at the lower back. The results, similarly to the multi-sensor setup, indicate substantial degradation of the performance when laboratory-trained systems are tested in the real-life setting. This degradation is higher than in the multi-sensor setup. Still, the performance provided by the single-sensor approach, when trained and tested with real data, can be acceptable (with an accuracy above 80%)

    Classical machine learning versus deep learning for the older adults free-living activity classification

    Get PDF
    Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs

    The in-motion-app for remote general movement assessment : a multi-site observational study

    Get PDF
    Objectives To determine whether videos taken by parents of their infants' spontaneous movements were in accordance with required standards in the In-Motion-App, and whether the videos could be remotely scored by a trained General Movement Assessment (GMA) observer. Additionally, to assess the feasibility of using home-based video recordings for automated tracking of spontaneous movements, and to examine parents' perceptions and experiences of taking videos in their homes. Design The study was a multi-centre prospective observational study. Setting Parents/families of high-risk infants in tertiary care follow-up programmes in Norway, Denmark and Belgium. Methods Parents/families were asked to video record their baby in accordance with the In-Motion standards which were based on published GMA criteria and criteria covering lighting and stability of smartphone. Videos were evaluated as GMA 'scorable' or 'non-scorable' based on predefined criteria. The accuracy of a 7-point body tracker software was compared with manually annotated body key points. Parents were surveyed about the In-Motion-App information and clarity. Participants The sample comprised 86 parents/families of high-risk infants. Results The 86 parent/families returned 130 videos, and 121 (96%) of them were in accordance with the requirements for GMA assessment. The 7-point body tracker software detected more than 80% of body key point positions correctly. Most families found the instructions for filming their baby easy to follow, and more than 90% reported that they did not become more worried about their child's development through using the instructions. Conclusions This study reveals that a short instructional video enabled parents to video record their infant's spontaneous movements in compliance with the standards required for remote GMA. Further, an accurate automated body point software detecting infant body landmarks in smartphone videos will facilitate clinical and research use soon. Home-based video recordings could be performed without worrying parents about their child's development

    The World Social Situation: Development Challenges at the Outset of a New Century

    Get PDF
    World social development has arrived at a critical turning point. Economically advanced nations have made significant progress toward meeting the basic needs of their populations; however, the majority of developing countries have not. Problems of rapid population growth, failing economies, famine, environmental devastation, majority-minority group conflicts, increasing militarization, among others, are pushing many developing nations toward the brink of social chaos. This paper focuses on worldwide development trends for the 40-year period 1970-2009. Particular attention is given to the disparities in development that exist between the world’s “rich” and “poor” countries as well as the global forces that sustain these disparities. The paper also discusses more recent positive trends occurring within the world’s “socially least developed countries” (SLDCs), especially those located in Africa and Asia, in reducing poverty and in promoting improved quality of life for increasing numbers of their populations

    Introduction to multifractal detrended fluctuation analysis in Matlab

    No full text
    Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra

    Introduction to Multifractal Detrended Fluctuation Analysis in Matlab

    No full text
    Physiological and behavioural phenomena are often complex, characterized by variations in time series. Variations in time series reflect how these phenomena organize into coherent structures by interactions that span multiple scales in both time and space. The present tutorial is an introduction to multifractal analyses that can identify these scale invariant interactions within time series by its multifractal spectrum. The multifractal spectrum can be estimated directly from scale-dependent measurements or from its q-order statistics. The tutorial emphasizes the most common scale-dependent measurements defined by the wavelet transforms and the detrended fluctuation analyses. The tutorial also emphasizes common features of all multifractal analyses, like the choice of linear regression method, scaling range and elimination of spurious singularities, which are important for a robust estimation of the multifractal spectrum. The tutorial ends with two brief examples where multifractal analyses are employed to time series from multifractal models and the complex phenomena of cognitive performance. References to available software for multifractal analyses are included at the end of the tutorial. The main aim of the tutorial is to give the reader an introduction to multifractal analyses without the extensive technicalities typically provided in mathematical journals
    • …
    corecore